WSSIAA 2(1993) pp. 225-238
©World Scientific Publishing Company

Parallel Jacobi Iteration in Implicit Step-by-Step Methods

P.J. van der Houwen & B.P. Sommeijer
CwI

Post box 4079, 1009 AB Amsterdam, The Netherlands

An iteration scheme is descibed to solve the implicit relations that result from the application
of an implicit integration method to an initial value problem (IVP). In this iteration scheme
the amount of implicitness is still free so as to comprise a large variety of methods, running
from fully explicit (functional iteration) to fully implicit (Newton's method). In the
intermediate variants (the so-called Jacobi-type methods), the influence of the Jacobian
matrix of the problem is gradually increased. Special emphasis is placed on the 'stage-
value-Jacobi' iteration which uses only the diagonal of the Jacobian matrix. Therefore, the
convergence of this method crucially depends on the diagonally dominance of the Jacobian.
Another characteristic of this scheme is that it allows for massive parallelism: for a d-
dimensional IVP, d uncoupled systems of dimension s have to be solved, where s is the
number of stages in the underlying implicit method (e.g., an s-stage Runge-Kutta method).
Hence, on a parallel architecture with d processors (d>>1), we may expect an efficient
process (for high-dimensional problems).

1980 Mathematical Subject Classification: 65M10, 65M20
Key Words and Phrases: numerical analysis, stability, parallelism.

1. Introduction

‘We shall be concerned with parallel predictor-corrector iteration of implicit step-by-step methods
for solving initial value problems (IVPs). For a wide class of functional equations, including ordinary
differential equations (ODEs), Volterra integral equations (VIEs), Volterra integro-differential equations
(VIDEs), delay-differential equations (DDEs), etc., these step-by-step methods (referred to as corrector
equations) can be represented in the form:

Y = Fn(h, Ug, Uy, ... , Up) + hV(M®D)Gy(Y), Un+1 = Hy(h, Ug, Uy, ..., Up, Y),
.y
Y = (Y T, Yo, ., YsDT, Uy o= (UniT, Un2T, o, U DT, n=0,1,2, ...

Here, h is the stepsize, v is the order of the IVP, M is an s-by-s matrix characterizing the corrector, Up
and Y present an r-dimensional and s-dimensional block vector of numerical approximations to the
exact solution of the IVP. If the IVP has dimension d, then Up and Y are vectors in rd-dimensional
and sd-dimensional vector spaces, respectively, and Fp, Gp and Hp are functions de;f)ending both on
the ITVP and the step-by-step method. Furthermore, M®I denotes the direct product of the matrices M
and I. In each step, the block vectors {Ug, U1, ..., Uy} are the input vectors, Up41 is the output

25

226

vector, and Y is the internal stage vector. We shall say that the corrector method has s internal stages
and r output points. The representation (1.1) is similar to the partitioned general linear method (GL%V()
format inuocfl)l(t):ed in[5]. . X . .

On sequential computers, multi-stage corrector equations are seldom used in predictor-corrector
iteration methods, because of the increased computational complexity if s > 1. However, paralle]
computers have changed the scene. A number of papers [15, 9, 11, 2, 3, 4, 14, 16] discuss the paralle]
aspects of functional iteration of Runge-Kutta-type correctors in the case of first-order and second-
order, nonstiff ODEs and show that the sequential costs can be reduced to such an extent that they are
at least competitive with, but often superior to, the best sequential codes. For stiff ODEs and VIEs, it
has been shown in [10, 7] that so-called diagonally implicit iteration of Runge-Kutta-type correctors is
suitable for implementation on lel computers (see also Section 2 of the prc_senttgapcr). In [8], these
functional and diagonally implicit iteration methods are discussed for solving the general class of
correctors defined by (1.1) and preconditioning techniques for accelerating their convergence are
studied.

In this paper, we consider another approach to accelerating the convergence of parallel iteration
methods, which leads us to Jacobi-type iteration methods. For nonstiff problems, we investigate Jacobi
iteration methods that are implicit in the s stage values Yiq (i=1, ..., s) corresponding to the qth
component of the stage vectors Yj, and we show that its computational costs per step are hardly higher
than those of function iteration. This type of Jacobi iteration will be called stage-value-Jacobi iteration,
It turns out that diagonal domina.nc{ of the Jacobian of the function Gn plays a crucial role in the rate of
convergence of stage-value-Jacobi iteration. This is not surprising, because, as is well known,
diagonal dominancy also plays an important role in classical (point-)Jacobi iteration. For example, we
have the following classical Lﬁeoncm, the proof of which can be found in Collatz [6]:

Theorem 1.1. Let the matrix A in the linear system Ax = b be irreducibly diagonally dominant. Then
the point-Jacobi iteration method
Xpe1 =Xn- D1 [Axy -b), n=0,1,..
converges for any starting vector x(. []
For linear problems, we shall derive a safe estimate for the convergence factor of stage-value-
Jacobi iteration and it will be shown that for IVPs with strongly diagonally dominant Jacobian matrix,
we obtain fast convergence, in spite of the modest degree of implicitness of the method. For a number

of numerical examples, we compare its efficiency with that of function iteration and we test the
reliability of the convergence factor estimate.

2. Parallel iteration methods
We shall study iterative methods for solving the stage vector equation on parallel computers. Let
us write the stage vector equation in (1.1) in the form

@1) Rp(h, Y):=Y - Fo(h, U, Uy, ., Up) - ¥(M&T)Gn(Y) = 0,
and consider Jacobi-type iteration methods of the form
@2 L(YD - WVQG(YGD + Ig(YD - YD) = 1o(Y-D) - WQG(Y (D) - PRy(h, YU 1)), q=1.. K,

where the iteration index j runs from 1 to m. Here, P and Q are real, nonzero sd-by-sd matrices, and
for a given value of g, Iq 1s an sd-by-sd diagonal matrix of which the diagonal entries are either 1 or O
(if Q=0, then (2.2) becomes fully explicit and reduces to functional iteration).

227

o e - : ; for computing Y0),

Each iteration in (2.2) requires itself the application of an iteration process .
This iteration process will be%qa.lled the inner itgxPadon method and the ;temugnﬁrﬂg&hgd thézm&igg
called the outer iteration method. It will be assumed that the inner iteration 1s 4& y
Newton method. . d I, determine the d

P may be considered as a preconditioning matrix and the matrices Q an oz b Ced : € the _cgrcﬁ
of implicitness of the iteration scheme. It will be assumed that the matrix obtain Y.‘s“"t‘égm ah
matrices I? equals the identity matrix I, so that all components of the stage V“Z%‘o.‘;na’% lera by ac
iteration of the iteration method (2.2) requires the solution of a set of k uncoupled, 1mp lct" subsystems
of dimension Trace(lq). Hence, it can be efficiently implemented on a k-processor CO‘BFC’“ et he uni

There are various obvious options for choosing the "partitioning n}amceio L;}\ E noting the unit
vector (with only unit entries) and the qth unit vector by e and eq, respectively, aving dimension
sd, we recognize the following special cases:

Point-Jacobi: . k=sd Trace(lg) =1 Ige = &
Stage-value-Jacobi: k=d Trace(lg) =s Ige =€ eg
Stage-vector-Jacobi: k=s Trace(lg)=d ~ Iqe = eq®
Newton: k=1 Trace(lg)=sd Ig=1
where g = 1, ..., k. The most simple option is point-Jacobi iteration. It has optimal parallelism in the

sense that k is as large as possible. The next simple option is stage-value-Jacobi iteration. It allows for
massive parallelism for large systems (k = d). The qth processor iterates on the s stage values Yig (i =
1, ..., s) corresponding to the qth component of the stage vectors Yj, so that per step each processor
has to solve m systems of equations of equal dimension s. However, in actual computations, the major
part of the computational effort per ste Bef rocessor usually goes into the evaluation of ms
components of the residual function Rn(h,%' -)?. A disadvantage of stage-value iteration may be the
poor load balancing if the computational complexity of the components of the residual function v
widely. This disa vamage disappears in the case of stage-vector-Jacobi iteration, where the gt
processor iterates on the d components Yqi (i=1, ..., d) of the gth stage vector Yg. Now the systems
of equations have dimension d, so that for larger dimensions d the major part of the computational
effort per step ({:er &roccssor consists of solving these d-dimensional systems. For IVPs originatin
from ODEs and VIEs, this iteration method has been analysed in the case where P =1 and Q = D®
with D an s-by-s matrix (cf. gl 0, 7] where this type of iteration was called diagonally implicit iteration).
It was shown that the sets of equations are of comparable computational complexity, so that we have
more or less equal load balancing of the processors. Stage-vector-Jacobi iteration has the additional
advantage of using the full Jacobian matrix of the IVP in the inner iteration which enables us to solve
stiff systems efficiently. The disadvantage is the low number of processors that can efficiently be
cglrg}lO){gd (k = s). At the end of the scale, we have Newton iteration with k = 1 and hence no intrinsic
elism.
P In a more sophisticated partitioning approach, the matrices Ig are chosen such that sets of
strongly coupled equations are taken together on one processor. wever, this requires precise
information on the IVP to be solved, and can only be analysed for specific classes of problems.

Finally, we remark that the iteration scheme (2.2) can be generalized by allowmg the matrix M
occurring in the residual function Ry, to depend on the gartitionin index q. This enables us to adapt
the iteration method and the corrector to the particular subsystem to be iterated. However, in this paper,
we confine our considerations to constant M.

2.1. The iteration error

In order to analyse the behaviour of the iteration error Y () - Y we consider the error equation
associated with (2.2) in the case where Gy, is linear in Y, satisfying the relation

@23) Gu(V)- Gn(W) = (18Jp) [V - W],

with Jp the d-by-d Jacobian matrix of Gp (evaluated at tp). Omitting in Jn the step index n, the inner-
outer iteration method reduces to the recursion

228

@4 1g[1-nvQuenly] [Y® - Y&] = - Ig PRy, YGD),
from which we deduce the iteration error equation

@5 Igl1-nvoueng] [Y0- ¥] =1 [1- P+ hVPMEN) - Qe [YG-D.-y].

The combined effect of the iteration process for q = 1, 2, ... , k can be studied by considering the
summmed recursions given by

k
@6 [1-ws][Y®-v]=[1-P-1¥(s - pven)] [¥G-D-v], S:=211qQa®J)Iq
F

(recall that the sumnming the matrices Ig was assumed to yield the identity matrix). The matrix S can be
expressed as

k Qut .. Qisd Qu .- Qus
@n s:=21q[-]Iq, Q:=[.]

Q... Q] Qs - Qss

where the Qjj are d-by-d matrices. In the cases of stage-vector-Jacobi iteration (Iqe = eq®e), point-
Jacobi iteration (Ige = €q), and stage-value-Jacobi iteration (Ige = e®eq), we respectively obtain

Q.. O Si1 .- O S11 ... S1s
(2.8) S= e o s S= e s S= . e
O ... Qg O .. Sss Ss1 .- Sss

where Sjj := diag (QjjJ). From these representations it follows that stage-vector-Jacobi iteration does
not split {hc Jacobian matrix, while the diagonal operation in the point-Jacobi and stage-value-Jacobi
iteration methods will in Fcncral not preserve the complete Jacobian.

In the remainder of this paper, we restrict our considerations to point-Jacobi iteration and stage-
value-Jacobi iteration without preconditioning (P = I).

3. Jacobi iteration versus functional iteration .
In this section, we discuss various aspects of Jacobi iteration with

(31 P=1 Q=MsL

Assuming that the Jacobian of Gp(Y()) at ty is given by I®Jp (cf. (2.3)) and solving (2.2) for Y() by
Just one Newton iteration, we obtain

62 Llr- ML) [YO - YGD] = Ry, YGD), g=1,.,d; j=1,...,m.

This equation shows that for point- and stage-value-Jacobi iteration methods only diagonal entries of
the Jacobian matrix of the IVP enter into the iteration process, so that stiff systems can only be solved
if the J acobian Jp is sufficiently diagonally dominant. Hence, in practice, one should consider the
methods using point- and stage-value-Jacobi iteration as nonstiff solvers. This immediately raises the
question whether Jacobi iteration has any advantage over (explicit) functional iteration obtained for P =

229

Iand Q = O. Let us first compare the computational costs of the two type of methods when
implemented with some stepsize and iteration error strategy.

3.1. Computational costs. Denoting the total number of steps in the intc%ntion | process by N and
the number of ste(gs where we need a new LU-decomposition of the matrix I - IqghV(M®In)Iq by 6N,
we conclude that the major costs of the stage-value-Jacobi iteration method are:

N evaluations of the sd components of Y©)

mN evaluations of the sd components of the residual function Ry

mN estimates of the sd components of the iteration error

ON evaluations of the d diagonal entries of Jn

dON LU-decompositions of s-by-s matrices of the form I - Iqh\’(M®Jn)Iq
mdN backward/forward substitutions by s-by-s matrices.

Here, m should be interpreted as the averaged number of iterations over all N steps. To the iteration
costs listed above, we have to add the costs of

in (L) N evaluations of the rd components of the function Hp defining the step point formula
in (1.
N estimates of the rd components of the truncation error associated with Up+1

These costs have intrinsic parallelism of degree at least d, so that d processors can efficiently be

employed.

guppose that the evaluation of one (block)component of Ry and Hp, and the evaluation of the
diagonal entries of Jp require FR, FH, and F({){loatin g-point operations (flops), respectively, and let us
assume that FR also contains the costs of Y() and iteration error costs, and that truncation error costs
are included in FH. Then, the total number of flops per processor per step required by functional
iterz}tion and séage—value-Jacobi iteration are given by FF] := msFR+ rFH and F§vJ := msFR + 6Fy +

20s°/3 + 2ms~ + rFH, respectively. Thus,
Esvi _, OF] + 20s3/3 + 2ms2 <1 OFy + 20s3/3 + 2ms2
Frt T msFR + 1Fy * msFR
In general, FJ < FR, so that we find
Fsvi _ms+6 25 6s+3m _, 25 0s+3m
Fr1 ms 3m Fr 3m Fr

This costs-increase factor changes per step and per processor because the value of FR usually varies
with t (e.g., in the case of Volterra equations) and with the components of Rp. It is larger as FR is
smaller. On the other hand, the run time J)er Processor per step is larﬁest for the processor to which the
most expensive components of the residual function are assigned. Hence, the relevant costs-increase
1factor 11; bovimded by 1 + s(1 + 0s/3m)/max{FR}. In most applications, this factor is only marginally
arger than 1.

For example, using an s-stage Gauss-Legendre corrector and iterating until the order of the
corrector is reached leads to m = 2s-1 iterations per step. Hence, stage-value-Jacobi iteration is about a
factor 1 + s/max{FR} more expensive than functional iteration.

In the case of point-Jacobi iteration, we have similar costs, except for the LU-decompositions
and backward/ forward substitutions which are negligible because only scalarly implicit relations are
involved. As a consequence, the main costs have parallelism of degree sd. We find

Fpy 98 8
FF1 =1+ msFR + rFy <l+ ms ’

230

so that point-Jacobi increases the computational costs only marginally.
Summarizing, we conclude that point-Jacobi and stage-value-Jacobi are generally not much more
expensive than functional iteration.

3.2. The convergence factor. Next, we consider the convergence of the Jacobi method (3.2). The
error equation corresponding to (3.2) reads

(33 YO.Y=z[vED.Y], Z:=h" (1-WKSJ,) ! (MB) -K®Jp), Jp := diag (),

where for functional iteration, point-Jacobi and stage-value-Jacobi we have K = O, K = diag (M) and
K =M, respectively. We shall call Z the iteration matrix and its spectral radius p(Z) the convergence
factor of the iteration method. The expression (3.3) shows that we always have convergence (i.e., p(Z)
<1)ifhis sufficiently small. .

For functional iteration the iteration matrix reduces to

Z = hV M®]J,

so that we have convergence factor

G4 p@) =hpMp(Q).

For Jacobi iteration, it is convenient to factorize Z according to
(G5 Z:=Z1Zy Zp:= (VK8 (- WKeIp)l, 23 =K IM&IylI-1,

where K and Jp are assumed to be nonsingular. This representation shows that, unlike functional
iteration, Jacobi iteration has a bouxlded iteration matrix Z for all h and J, provided that the entries of
the 'diagonally-scaled'-Jacobian JD~'J are bounded. Furthermore, the matrix Z] can be partitioned into
a matrix wifh diagonal blocks cijJD, whereas the blocks in the partitioning of Z7 contains the full
matrix Jp~J. Therefore, the matrix Z3 will largely determine the convergence behaviour of the
iteration process. . .

The convergence wil be faster as the maﬁnimde (in some sense) of the iteration matrix Z = Z1Zp
is smaller. We shall estimate the magnitude of this matrix by the quantity p(Z1)p(Z2). The followin
theorem presents an easy estimate for p(Z1)p(Z2) and specifies a few cases where p(Z1)p(Z2
provides an estimate for the convergence factor p(Z). In this theorem, it is convenient to use the
minimal value of the real parts of the eigenvalues of a matrix A. Denoting the spectrum of A by G(A),
this quantity is defined by

(3.6) W(A) := min {Re(a): ae 6(A)).

Theorem 3.2. Let
h¥p(K)p(Jp) p(K-M®Jp"lJ - 1)
V1 + 20%(KRCTp) + hp(K)2p(Ip)2

3.7 o(Jp) € R", o(K)e C*, E(h):=

Then the following assertions hold:

(a) Arbitrary K, M and Jp => p(Z1)p(Z2) <E(h).

®) KM = MK, Jp =381 => P(2) < p(Z1)p(Zo) < E(h).
© K=M, Jp=8l => p(Z)=pZ1)p(Z2) SE().

231

]

@ K =M, Re (6(K)) = w(K), Jp=8 => p(2) = p(Z1)p(Zy) = E(h).
O] K=xl, Jp=38l => p(@) = p(Z1)p(Zp) =E(h).

Proof. Let x and & denote the eigenvalues of K and ID, respectively. From the definition of Z] and
Z2 it then follows that

hVi3l Vi3l
(3.8) P(ZI)P@ = maxy _I_K_..EEL) = maxy hVIx3! P(Z?.)
1-hVx3l V1 + 2hVRe(-x8) + h2VIxsI2
V|
< maxgs hVIk3l p(Zo)

V1 + 20V (K)p(-Jp) + h2VIxsI2

Since the righthand side in this inequality is an increasing function of Ik3l, we obtain the result (a). The
convergence factor ?((%) is bom}ded by p(Zl%g.(Zz) if Z1 and Z2 commute, or equivalently, if the
matrices K®Jp and K~ *M®J)~*J commute. This happens if both K and M, and Jp and J commute.
The condition on Jp) and J implies that the Jacobian matrix J has constant diagonal entries, to obtain the
result (b). Thirdly, if also K = M, then Z becomes the direct product of the matrices Z] and Z2, so that
we have p(Z) = p(Z1)p(Z2), l_eadmé to (c). The assertions (d) and (e) follow by observing that in these
cases we have strict equality in (3.8). []

In the case of stage-value-Jacobi iteration (K = M), the estimate E(h) reduces to

hYp(M) p(p) pUp I - 1)
V1 + 20Vu(MR(Ip) + h2p(M)2p(Jp)?

3.7 E(h) =

showing that, independent of the particular corrector used, fast convergence can be exqectcd when
applied to IVPs possessing strongly diagonal dominant Jacobian matrices, i.e., pUJD"'J - I) << 1.

erefore, from now on, we concentrate on stage-value-Jacobi iteration. For future reference, we list
in Table 3.1 the radius p(M) and the minimal real part p(M) of the spectrum of the matrices M of
Gauss-Legendre correctors.

Table 3.1. Values of p(M) and p(M) for s-stage Gauss-Legendre correctors.

s=2 s=3 s=4 §=5 s=6

p(M) 0.289 0.216 0.166 0.133 0.115
pM) 0.250 0.143 0.092 0.064 0.048

3.3. Transformation to constant diagonal entries in the Jacobian

In general, the Jacobian J will have variable diagonal entries, so that the condition Jp = 81 in
Theorem 3.2 (b) - () is not satisfied and consequently the estimate E(h) is not necessarily an upper
bound for the convergence factor p(Z). In order to gain some apriori insight into the true convergence
factors for problems with nonconstant diagonal entries in the Jacobian, we may try to transform the
problem into a problem with constant diagonal entries in its Jacobian. If the integration method applied
to the original and transformed problems show a comparable convergence behaviour of the iteration
process, then the convergence factor corresponding to the transformed problem is indicative for the
convergence factor corresponding to the original problem. We illustrate this for the IVP for ODEs. Let

232

the ODE be given by y'(t) = f(y(t)), and define z(t) = Ty(t) with T a constant nonsingular d-by-
matrix. In tergs of z{t), we have the ODE z'(t) = g(z(1)) = Tf(I“‘l}z(t)) with Jacobian matrix Tnxff
where J = J(y) denotes the Jacobian of the original fl ht hand side function f. Suppose that we can find
a matrix T such that at y = y(ty) the matrix TJT-! has constant diagonal entries 8. Then, instead of
integrating the equation ty‘(t) =lr‘1(y(t)) from tp 10 th+], We can integrate the equation z'(t) = g(2(V) over
this 1nterval, while satisfying the condition of constant diagonal entries. The iteration matrix defining
the iteration process for the transformed problem is given by

(G9) Z:=Z1Zp Z;:=(WVKSSI) (I-hVK®8I) L, Z:=KIM®SITIT! -1

A comparison of the iteration matrices defined by (3.5) and (3.8) reveals that they are rather similar
indicating that we can expect comparable convergence behaviour. We shall call the iteration method
with iteration matrix (3.9) the transformed iteration method.

Let us consider the case of triangular transformation matrices T. In order to construct such a
transformation matrix T, we write T=L -&1- D, where L is strictly lower triangular and D is diagonal. To
obtain constant diagonal entries § in TJT-!, we have to satisfy the relation

(3.10) diag((L+ D) J L+ D)) =8l
Given the matrix L and 3, this equation presents a system of d equations for the d diagonal entries of
D

Theorem 3.3 presents an extremely simple transformation that can be used for deriving apriori

estimates for the convergence factor in cases where the Jacobian contains at least one row with nonzero
off-diagonal elements.

Theorem 3.3. Let J be an d-by-d matrix with entries ajj and let T be the triangular matrix defined by

4000 ..
1d00 ...
T=|1060. | g=t, s=12d 9 g
8 - ajj d
100 d..

1f d1, a1i and & - aji do not vanish for i =2, ..., d, then diag (TIT-1) = 81
Proof. Substitution of L + D =T and

@*! o0 0 .0
~(ddt @ 0 .0

L+Dyl=T!=
-(did3y! 0 @)l..0

into (3.9) yields the following system for the diagonal entries dj:

n
ann -, 8 @)1 =8 ay@) !+ ay =5, i=2,...d
2

233
Choosing 8 = Trace(J)/d, this system is solved by dj = a13/(8-aj;), i=2, ..., d, leaving dj free. []

4. Numerical experiments

In this section, we report numerical comparisons of results obtained by functional iteration and
by stage-value-Jacobi iteration for IVPs for first-order ODEs y'(t) = f(t, y(1)). In our experiments, we
used bc fourth-order Gauss-Legendre corrector, so that the residual function occurring in (3.2) is
given by

Ru(h, ¥) = Y - yne - hM®D) f(ety + ch, ¥), M =15 (

3 32V3
N3 3)

‘We used the simple 'last step value' predictor Y0 =¢ n. In order to "tune' the arguments of f, we set
¢ =0 in the computation of ?(n(h, Y&t)), and ¢ = Me oglerwisc.

In particular, we check the relevance of the estimate E(h) defined by (3.7) as an indicator for
convergence of the iteration method. For functional iteration and stage-value-Jacobi iteration the
estimates E(h) are respectively given by

0.29hp@p)p(Jp 1y - 1)
V1 + 0.5h(-Jp) + 0.084h2p(Jp)2

@.1) Ep)=0.2%p(Q), Esvit)=

4.1. Effect of the constant-diagonal-transformation
Firstly, we compare the convergence of functional iteration and of stage-value-Jacobi iteration for
the untransformed and transformed problem. Consider the linear problem

11 1 1
@2 %{Qﬂy«)w, ¥y =0, J:= {o 21] vi= [1} 0<ts<T.

11-12 2
Att=T =5, the solution is approximately given by y(5) = (41.529764, 18.516263, 51.537861)T.
The rapid increase of the solution values is caused lg a gositive eigenvalue of the Jacobian mziu-ix J
(they are approximatel fgiven by -2.19, -2 and +0.69). Since p(J) = 2.2, p(Jp) =2 and p(Jp-1J - 1)
= l.g, the estimates E(hy or functional iteration and stage-value-Jacobi iteration are given by

L1h

N1+ 0.25h + 0.336hZ

Next we consider the transformed version of (4.1). According to Theorem 3.3, we define the

matrices
10 0 1 00
T:= (16/5 0 J T1:= (-5/65/6 0]

10 32 23 0 273

(43a) Efy(h) = 0.64h, Egyjy(h)=

so that we can transform (4.2) to the constant-Jacobian-diagonal-form:

k6 sl6 46
(4 %{9 =TTl +Tv, 20)=0, TT1= | 4930 76 2215 |, 0<1<T.
112 512 706

234

We now have p(Jp) = 7/6 and p(p~1J -) = p(-(6/7)TIT-1 -) = p(-(6/7)] - I) = 1.59. Denoting th
estimate EGY) or(u'?xzxsformcd stfgc—value itcrat?on by ETSv(h), we find g the

0.54h

43b) E Y= e |
TSIt V1 +0.58h + 0.11h2

We integrate (4.2) and (4.4) from t = 0 until t = 5 using stepsizesh=T/Nwith N =1, .. 5. [,
the case (4.4)’@& n(ume)rical golution yNatt=35is obtampd%m t!?e back transformation yN = ‘sz,
For the two-point Gauss-Legendre corrector, Table 4.2 lists the estimates E(h) defined by (4.2) and
(4.4), and the numbers of correct significant decimal digits A at the endpoint defined by (devision is
meant componentwise)

=- Y@ -yN
4 = - logyo (=1 5l).

These results show that direct and transformed stage-value-Jacobi iteration perform similarly, but for
ransformed stage-value-Jacobi iteration the estimate ETIS:VJ(h) is a much better predictor for the actual
erformance otg the iteration process than the estimate E§yJ(h) corresponding to direct stage-value-
acobi iteration. Furthermore, the convergence region of stage-value-Jacobi is considerably larger than
that of functional iteration. However, if the functional iteration method does converge, then its true
convergence factor seems to be smaller than that of stage-value-Jacobi.

Table 4.2. Correct significant decimal digits A for problem (4.1) and (4.3) att=T = 5
obtained for the two-point Gauss-Legendre corrector (* indicates A < 0).

Iteration mode Th E() m=2m=3m=4 m=5 ... m=10

...

Functional iteration 3 1.1 * * 08 08 ... 02
4 .80 05 1.2 27 27 ... 2.6
5 .64 1.5 2.4 3.0 3.0 2.9
Direct 1 1.7 0.1 02 03 04 1.5
stage-value iteration 2 1.4 04 0.6 08 1.2 1.6
3 1.2 0.6 09 1.4 20 2.1
4 1.0 0.8 1.3 1.8 2.6 2.6
5 .88 1.0 1.5 22 3.2 3.0
Transformed 1 1.04 * 0.1 0.1 03 1.4
stage-value iteradon 2 .76 03 05 07 1.0 2.3
3 .59 05 08 1.2 1.6 2.4
4 49 0.7 1.1 1.6 23 2.7
5 41 09 14 20 29 3.0

235

4.2. Widely spaced diagonal entries
Our next test problem is a system of 10 nonlinear equations:

1 y2t) O ... 0 O 0
iw 2 y3@... 0 0 O

4.5) %Q =A[y®-esin®] +ecos, A= |, ., » 0<1<T,
0 0 0 ..yg® 9 yo®
0 0 0 .. 0 y -10

with exact solution y(t) = e sin(t). The problem is constructed such that the diagonal entries of its
Jacobian are widely varying, so that the constant-diagonal condition occurring ingI‘heorem 3.2 is far
from being satisfied. Along the solution, the Jacobian of (4.5) is given by the matrix A, so that USinF
Gerschgorin's disk theorem, we have for p(J) and p(JD'll - I) the estimates -10 + Isin(t)! and Isin(t)l,
respectively. Hence, the dxafonz;l dominance of the Jacobian depends on t, resulting in intervals of
strong, weak or no diagonal dominancy. The estimates E(h) are given by

Ep(h) = 3.19h, Egyyth)= ~————2 b
1+ 0.5h + 8.4h2

Table 4.3 lists the number of correct decimal digits, defined by

T
A:=-logio (HyN-y(T) k), N:= i

These results clearly demonstrate the superior convergence behaviour of stage-value-Jacobi iteration.

Table 4.3. Cormrect decimal digits for problem (4.5) att = T = 5 obtained
by two-point Gauss-Legendre corrector (* indicates divergence).

Functional iteration1/2 1.6 * * * * *
1/4 0.80 *
1/8 0.40 2.1
Stage-value-Jacobi 1 0.92 0.6
12 0.79 1.1
1/4 0.56 2.8
1/8 0.33 3.0

4.3. Reaction-diffusion equations
In order to see the effect of stage-value-Jacobi iteration in the case of a large system, we consider
the two-dimensional reaction-diffusion equation

9
Goy LD L a0 - uttrrxa),

236

defined on the unit square. Here € is a small parameter and A denotes the Laplacian in the spatal
variables x1 and x2. %Se selected a problem from combustion theory for which f(u) is defined as P

(4.6b) f(u):=D(l+a-u) exp(- %), D:= Rﬁ;gi-s) .

Details about this model can be found in [12]. The temperature u(t, X1, X2) is subject to the initial and
boundary conditions

@46c) w0, x1,x)=1, %%=0 atx;=0, x2=0, u=latxy=1, xg=1.

Semidiscretization of (4.6a) on a uniform grid of width Ax, usin,]s_g;mmeu'ic second-order differences
and incorporating the boundary conditions leads to a system of O}

@6 2 a0 2ay0 - 6.
where f(y) has to be understood componentwise. For this problem we have

3= e(Ax)2A - diag(3f(y())/Ay) and Jp = - diag(4e(ax)Ze + (y())/dy).

In our test, we selected the following parameter values: R = 5, 8 = 10, a = 1 (see also [1]).

Furthermore, € was set to 10~9 and Ax = 1/40, resulting in a set of 1600 ODEs. The effect of this
arameter choice is that the solution u increases from u =1 (at t = 0) to the 'steady state'u~ 2 att =
.5, the endpoint of the integration interval. . .

The main difﬁcuhg in this problem is caused b thc-2 reaction term which chanﬁes sign in the
interval of integration: of(u)/du = Dexp(-8/w)[(1 +a - ugﬁlu - 1] is positive until u reaches the value u
= 1.71 (the so-called ‘ignition’ point where a reaction front is formed running to the outer Dirichlet
boundaries). For components having a value >1.71, of/du is negative, ending at 9f/du = -74 for u-
values close to the steady state. As a consequence of this behaviour, the elements of the matrix Jp are
small in some parts of the integration interval, resulting in large values of the factor p(Jp™*J - I). Once
the ignition point has been eached, offou becomes negative, the dlatgonal. dominance of the Jacobian is
rc-esvlablishcd and ﬁ(JD‘ J -) quickly decreases; at the end of the integration interval we have
pUJD~J - I) = 0.02. Hence, for this problem the estimate E(h) is only relevant in part of the integration
nterval (we remark that the assumption 6(Jp) € R- of Theorem 3.2 is even violated for some t-
values). Nontheless, we have applied the algorithms to this problem, particularly because reaction-
diffusion equations have great practical relevance. The results of this test are collected in Table 4.4.

Table 4.4. Correct decimal digits for problem (4.6") at t = T = 0.5 obtained
by two-point Gauss-Legendre corrector (* indicates divergence).
Iteration mode h m=] m=2 m=3 m=4 m=5 ... m=10
Functional iteration 1/10 *
120 0.5
1740 1.9
1/80 3.6
Stage-value-Jacobi 1/10 *
120

QUrO AW &
HBN—=O ANO—

237

We see that stage-value-Jacobi shows a much better convergence behaviour than functional
iteration: 2 or 3 iterations are sufficient (for h < 1/20), whereas functional iteration needs at least 4
iterations. Hence, in spite of the aforementioned deficiencies of the stage-value-Jacobi method for this
problem, it seems to possess a rather wide applicability.

4.4. Mildly stiff problems

Finally, we show that stage-value-Jacobi iteration can even be applied to mildly stiff problems.
Consider a test problem proposed by Kaps [13]:

9_}:;@ =-@+eh)yi® + el (2
“8) V1O =y20) =1, 0<t<1,

d}jdz() =y1() - y2(t) (1 + y2(1)),

wit};1 exact solution y1 = exp(-2t) and y2 = exp(-t) for all values of the parameter €. For this problem
we have

I- -2+ely 2elyy e -+l 0
‘(1 -(1+2y2))' "'(0 -(1+2y2))‘

Wi intcjgratc thlIS problem uiing the two-point Gaufs;ichendrc corrector. For small € we have
p) =e!, pUD) =€, and pJD™J - 1) = (2y2/(1+2y2)) /4, leading to

0.29(h/e)(2y/(1+2y2)) /2
\Il + 0.5h(1+2y2) + 0.084(h/e)2

4.9) Epp(h) = 0.29 (h/e), Esvj(h)=

For € = .01, Table 4.5 lists the numbers of correct decimal digits (in absolute sense) for various
values of the stepsize h. As in the preceding example, the convergence region of stage-value-Jacobi is
considerably larger than that of functional iteration (assuming that the numerical approximation to y2
varies from 1 until exp(-1) = 0.37, the interval for ESVJ(h) is easily calculated and given in the table).
Furthermore, althou% the Jacobian of this problem is only weakly diagonally dominant (i.e., p(JD"J
- I) is not much smaller than 1), the rate of convergence of the stage-value-Jacobi method appears to be
substantially larger than that of functional iteration.

Table 4.5. Correct decimal digits for problem (4.8) at t = 1 obtained by
two-point Gauss-Legendre corrector for € =.01 (* indicates A < 0).

Functional iteration> 1/20 > 1.02 * * * * *
1/40 0.73 * 19 41 73 7.0
Stage-value-Jacobi 1/2 [0.65, 0.82] * * x 18 1.9
1/5 [0.64,0.80] * 19 0.8 3.3 3.2
1/10[0.61, 0.77]0.0 3.2 24 49 4.6
120[0.53, 0.66] 1.5 3.9 3.8 6.1 5.9
1/40[0.38, 0.4712.3 4.7 5.0 7.3 7.1

238

References

[1] Adjerid, S. & Flaherty, J.E. (1988): A local refinement finite element method for two
dimensional parabolic systems, SIAM J. Sci. Stat. Comput. 9, 792-811.

[2] Burrage, K. (1991): The error behaviour of a general class of predictor-corrector methods, Appl.
Numer. Math. 8, 201-216.

[3] Burrage, K. (1992): The search for the Holy Grail, or Predictor-Corrector methods for solving
ODEIVPs, to appear in Appl. Numer. Math..

[4] Burrage, K. (1993): Efficient block predictor-corrector methods with a small number of
iterations, to appear in J. Comp. Appl. Math.

[5] Burrage, K. & Butcher, J.C. (1980): Nonlinear stability of a general class of differential
equations methods, BIT 20, 185-203.

[6] Collatz, L. (1950): Uber die Konvergentzkriterien bei Iterationsverfahren fur lineare
Gleichungssysteme, Math. Z. 53, 149-61.

[7] Crisci, M.R., Houwen, P.J. van der, Russo, E. & Vecchio, A. (1992): Stability of parallel
Volterra-Runge-Kutta methods, to appear in Appl. Numer. Math..

[8] Houwen, P.J. van der (1993): Preconditioning in implicit initial value problem methods on
parallel computers, to appear in Advances in Comp. Math...

[91 Houwen, P.J. van der & Sommeijer, B.P. (1990): Parallel iteration of high-order Runge-Kutta
methods with stepsize control, J. Comp. Appl. Math. 29, 111-127.

[10] Houwen, P.J. van der, & Sommeijer, B.P. (1991): Iterated Runge-Kutta methods on parallel
computers, SIAM J. Sci. Stat. Comput. 12, 1000-1028.

[11] Jackson, K.R. & Ngrsett, S.P. (1990): The potential for parallelism in Runge-Kutta methods,
Part I: RK formulas in standard form, Technical Report No. 239/90, Department of Computer
Science, University of Toronto.

[12] Kapila, A.K. (1983): Asymptotic treatment of chemically reacting systems, Pitman Advanced
Publ. Company.

[13] Kaps, P. (1981): Rosenbrock-type methods, in: Numerical Methods for Stiff Initial Value
Problems, G. Dahlquist and R. Jeltsch, eds., Bericht nr. 9, Inst. fiir Geometrie und Praktische
Mathematik der RWTH Aachen, Aachen, Germany.

[14] Nguyen huu Cong (1993): Note on the performance of direct and indirect Runge-Kutta-Nystrém
methods, to appear in J. Comp. Appl. Math..

[15] Ngrsett, S.P. & Simonsen, H.H. (1989): Aspects of parallel Runge-Kutta methods, in: A.
Bellen, C.W. Gear and E Russo (Eds.): Numerical Methods for Ordinary Differential Equations,
Proceedings L'Aquila 1987, LNM 1386, Springer-Verlag, Berlin.

[16] Sommeijer, B.P. (1993): Explicit, high-order Runge-Kutta-Nystrém methods for parallel
computers, submitted for publication.

